• Thứ Sáu, 06/08/2004 21:37 (GMT+7)

    Trò chơi và hệ nhị phân


    Hệ nhị phân có vị trí hết sức quan trọng trong máy tính. Có một trò chơi đơn giản cho thấy hệ nhị phân cũng có một vai trò quyết định trong chiến thuật để người biết luôn luôn thắng. Ta tạm gọi là trò chơi LẤY HẠT.

    Trò chơi như sau: có 3 đống hạt và ban đầu mỗi đống phải có ít nhất 1 hạt. Hai người chơi (hoặc một người và máy tính), lần lượt thực hiện như sau: Với một số hạt đã cho, người thứ nhất được quyền bố trí 3 đống sao cho mỗi đống có ít nhất 1 hạt; người thứ hai lấy một số hạt theo nguyên tắc chỉ lấy trong một đống nào đó và phải lấy ít nhất 1 hạt hay có thể lấy tất cả các hạt trong đống đó. Sau đó người thứ nhất lại phải lấy hạt theo nguyên tắc trên. Hai người lần lượt lấy hạt theo nguyên tắc đó cho đến khi người nào sau cùng phải lấy 1 hạt duy nhất thì người đó thua.

    Với số hạt là 3 hoặc một số nguyên dương chẵn và khác 2n (n là số nguyên dương), bao giờ cũng có một chiến thuật để người được quyền bố trí số hạt đầu tiên chiến thắng. Với số hạt là một số nguyên dương lẻ lớn hơn 3 hoặc số nguyên dương chẵn 2n (n là số nguyên lớn hơn 1) mà người thứ nhất bố trí, người thứ hai biết chiến thuật luôn luôn chiến thắng (dĩ nhiên phải thực hiện đúng chiến thuật, không hề sơ suất). Chiến thuật này đơn giản, chứng minh không quá khó nhưng cần có kiến thức chuyển đổi một số nguyên từ hệ thập phân sang hệ nhị phân và lưu ý cộng theo hệ thập phân của các số viết theo hệ nhị phân! 

    Sau đây là trò chơi LẤY HẠT viết một cách đơn giản bằng VB 6.0, trong đó số hạt giới hạn của mỗi đống không quá 25 hạt và người chơi với máy.

    Tạo giao diện trò chơi

    Chạy VB 6.0, chọn ứng dụng 'Standard EXE', bạn có form tên là Form1. Trong form này bạn tạo các điều khiển sau (chỉ nêu một số tính chất chính, các tính chất khác có thể sử dụng mặc định; dùng font tiếng Việt nào đó; các mảng 1, 2, 3 phải đặt tương ứng):

    Vị trí, kích thước của form1 và điều khiển tuỳ bạn bố trí sao cho đẹp và thuận tiện.

    Nhập code

    Trong cửa sổ Code của Form1 bạn nhập các đoạn code theo mã nguồn mẫu (tải về mã nguồn trên website của TGVT-PCW VN). Chiến thuật nhị phân được thể hiện trong thủ tục MayChoi().

    Sau khi nhập code xong, biên dịch thành tập tin EXE để sử dụng.

    Hướng dẫn vắn tắt cách chơi

    - Khi chạy chương trình bạn chọn một trong hai việc: 'Máy bố trí hạt' hoặc 'Bạn bố trí hạt', và sau đó nhấn nút lệnh 'Bắt đầu'.

    - Nếu bạn bố trí hạt trước, bạn gõ số hạt trong TextBox và nhấn nút lệnh 'Số hạt:'  trong từng đống.

    - Sau khi bạn bố trí số hạt đủ ba đống sẽ xuất hiện nút lệnh 'Máy thực hiện'. Bạn nhấn nút lệnh này (Vì muốn người thi đấu có thời gian xem máy thực hiện nên ở đây tôi không viết chương trình cho máy tự động lấy hạt, nếu không bạn sẽ không theo dõi kịp). Cứ lần lượt thực hiện cho đến kết thúc.

    - Nếu bạn muốn lấy hạt: hãy chọn CheckBox trong đống nào đó, mỗi CheckBox được chọn là 1 hạt sẽ xoá. Sau đó click nút lệnh 'Xoá hạt chọn'.

    - Nút lệnh 'Bắt đầu lại' dùng khi bạn muốn chơi lại trò chơi mà không chờ kết thúc.

     

    Frame: Thủ tục MayChoi()

    Dim i As Integer, n As Integer, j As Integer, k As Integer
    Dim XX As Single
    Dim Y(0 To 2) As String
    Dim YY As Single
    Dim a, ZZ
    For i = 0 To 2
        Hat(i).Enabled = False
        SoHat(i).Enabled = False
    Next i
    For i = 0 To 24
        If Check0(i).Visible = True And Check0(i).Value = 1 Then Check0(i).Value = 0
        If Check1(i).Visible = True And Check1(i).Value = 1 Then Check1(i).Value = 0
        If Check2(i).Visible = True And Check2(i).Value = 1 Then Check2(i).Value = 0
    Next i
    ' Ghi vào List một lần:
    If h = True Then
        List1.AddItem 'BẠN:  ' & vbTab & SoHat(0).Text & vbTab & SoHat(1) & vbTab & SoHat(2)
        h = False
     End If
    ' Nếu có ít nhất hai đống cùng số hạt:
    If (X(0) - X(1)) * (X(1) - X(2)) * (X(2) - X(0)) = 0 Then
         For j = 0 To 2
            If X(j Mod 3) = X((j + 1) Mod 3) Then
                ' Nếu hai đống có số hạt bằng 0 thì (đống còn lại phải có số hạt lớn hơn 1):
                 If X(j Mod 3) = 0 Then
                        If X((j + 2) Mod 3) > 1 Then
                            z = (j + 2) Mod 3
                            d = Coso10(X(z)) - 1
                            Exit For
                        End If
                 End If
                ' Nếu hai đống có số hạt bằng 1 thì:
                 If X(j Mod 3) = 1 Then
                    ' Nếu số hạt đống còn lại là 0 hay 1 thì chọn đống (j mod 3):
                    If X((j + 2) Mod 3) = 0 Or X((j + 2) Mod 3) = 1 Then
                            z = j Mod 3
                            d = 1
                          Exit For
                    End If
                    ' Nếu số hạt đống còn lại lớn hơn 1 thì chọn đống này và lấy đi chỉ chừa 1 hạt:
                    If X((j + 2) Mod 3) > 1 Then
                        z = (j + 2) Mod 3
                        d = Coso10(X(z)) - 1
                        Exit For
                    End If
                End If
                ' Nếu hai đống có số hạt bằng nhau và lớn hơn 1 thì:
                If X(j Mod 3) > 1 Then
                    ' Nếu đống còn lại là 0, máy sẽ thua nếu bạn biết chiến thuật,
                    ' chọn d=1 để 'câu giờ' và chờ bạn sơ suất:
                    If X((j + 2) Mod 3) = 0 Then
                            z = j Mod 3
                           d = 1
                          Exit For
                    End If
                    ' Nếu đống còn lại có từ 1 hạt trở lên thì lấy đi hết số hạt của đống này:
                    ' Bạn sẽ thua!
                    If X((j + 2) Mod 3) > 0 Then
                        z = (j + 2) Mod 3
                        d = Coso10(X(z))
                        Exit For
                    End If
                End If
        End If
        Next j
    ' Ngược lại, không có hai đống nào có số hạt bằng nhau:
    Else
        ' Nếu có hai đống, một đống 0 hạt và một đống có 1 hạt:
        ' (Do các X không âm)
        If X(0) + X(1) = 1 Or X(1) + X(2) = 1 Or X(2) + X(0) = 1 Then

     

            For i = 0 To 2
                If X(i Mod 3) + X((i + 1) Mod 3) = 1 Then
                    ' Lấy hết các hạt  của đống còn lại (nhiều hơn 1):
                    z = (i + 2) Mod 3
                    d = Coso10(X(z))
                    Exit For
                End If
             Next i
        'Ngược lại:
        Else
        ' Chú ý: các số viết trong hệ nhị phân nhưng
        ' cộng theo hệ thập phân!
            XX = X(0) + X(1) + X(2)
            ' Xác định z cho đống nhiều hạt nhất:
            If X(0) > X(1) And X(0) > X(2) Then z = 0
            If X(1) > X(2) And X(1) > X(0) Then z = 1
            If X(2) > X(0) And X(2) > X(1) Then z = 2
             n = Len(Trim(XX))
          ' Chuyển đổi thành chuỗi có chiều dài là n:
            Y(z) = CStr(X(z))
            Y((z + 1) Mod 3) = String$(n - Len(Trim(X((z + 1) Mod 3))), '0') & CStr(X((z + 1) Mod 3))
            Y((z + 2) Mod 3) = String$(n - Len(Trim(X((z + 2) Mod 3))), '0') & CStr(X((z + 2) Mod 3))
          'Tìm chữ số của XX có trị là 1 hoặc 3:
          For i = 1 To n
            If Mid(XX, i, 1) = 1 Or Mid(XX, i, 1) = 3 Then
                'Xác định lại z khi gặp chữ số 1 ở cột i sau đó thoát ngay vòng lặp k:
                For k = 0 To 2
                    If Mid(Y((z + k) Mod 3), i, 1) = 1 Then
                        z = (z + k) Mod 3
                        Exit For
                    End If
                Next k
                Exit For
            End If
        Next i
            ' Tính tổng của hai đống kia theo hệ thập phân:
            YY = X((z + 1) Mod 3) + X((z + 2) Mod 3)
            ' Xác định ZZ là số hạt của đống z còn lại sau khi lấy đi (theo hệ nhị phân):
            ZZ = ''
            For i = 1 To Len(Trim(YY))
                a = Mid(YY, i, 1)
                ZZ = ZZ & (a Mod 2)
            Next i
            ZZ = Val(ZZ)
            ' Xác định số hạt phải lấy đi của đống z:
            ' Khi XX toàn chữ số chẵn thì máy sẽ thua, khi đó
            ' ZZ=X(z), chọn d=1 để chờ thời cơ bạn sơ suất
            If ZZ = X(z) Then
                d = 1
            Else
                d = Coso10(X(z)) - Coso10(ZZ)
            End If
        End If
    End If
    g = True
    Call Boc
    g = False
    ' Kiểm tra kết quả
    KetQua.ForeColor = vbBlue
    If T(0) + T(1) + T(2) = 1 Then
        KetQua.Caption = 'Xin lỗi! Bạn đã thua!'
        For i = 0 To 2
            Xoa(i).Enabled = False
        Next i
        Option1.Visible = True
        Option2.Visible = True
        ChoiMoi.Visible = False
        BatDau.Visible = True
        BatDau.SetFocus
        h = True
    Else
        For i = 0 To 2
            Xoa(i).Enabled = True
        Next i
        KetQua.Caption = 'Bạn chọn và bóc hạt!'
    End If
    MayChoi.Enabled = False
    End Sub

     

     

    Trần Việt Hùng
    VietHungTran@pmail.vnn.vn

    ID: A0407_122